@article{oai:nifs-repository.repo.nii.ac.jp:00000367, author = {OHTANI, Hiroaki and KAGEYAMA, Akira and TAMURA, Yuichi and ISHIGURO, Seiji and SHOHJI, Mamoru}, journal = {Plasma and Fusion Research}, month = {Jul}, note = {We succeeded in integrating the visualization of both simulation results and experimental device data in virtual-reality (VR) space using CAVE system. Simulation results are shown using Virtual LHD software, which can show magnetic field line, particle trajectory, and isosurface of plasma pressure of the Large Helical Device (LHD) based on data from the magnetohydrodynamics equilibrium simulation. A three-dimensional mouse, or wand, determines the initial position and pitch angle of a drift particle or the starting point of a magnetic field line, interactively in the VR space. The trajectory of a particle and the stream-line of magnetic field are calculated using the Runge-Kutta-Huta integration method on the basis of the results obtained after pointing the initial condition. The LHD vessel is objectively visualized based on CAD-data. By using these results and data, the simulated LHD plasma can be interactively drawn in the objective description of the LHD experimental vessel. Through this integrated visualization, it is possible to grasp the three-dimensional relationship of the positions between the device and plasma in the VR space, opening a new path in contribution to future research.}, title = {Integrated Visualization of Simulation Results and Experimental Devices in Virtual-Reality Space}, volume = {6}, year = {2011} }