ログイン
言語:

WEKO3

  • トップ
  • ランキング
To

Field does not validate

To

Field does not validate

To
lat lon distance


インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. Published Papers
  2. Published Papers

Eulerian variational formulations and momentum conservation laws for kinetic plasma systems

http://hdl.handle.net/10655/00012617
http://hdl.handle.net/10655/00012617
6528233f-5f46-4139-ad71-5869f4dd92b7
名前 / ファイル ライセンス アクション
Phys.Plasmas25_102506.pdf Phys.Plasmas25_102506 (574.1 kB)
license.icon
Item type 学術雑誌論文 / Journal Article(1)
公開日 2021-07-28
タイトル
タイトル Eulerian variational formulations and momentum conservation laws for kinetic plasma systems
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者 SUGAMA, Hideo

× SUGAMA, Hideo

SUGAMA, Hideo

Search repository
NUNAMI, Masanori

× NUNAMI, Masanori

NUNAMI, Masanori

Search repository
SATAKE, Shinsuke

× SATAKE, Shinsuke

SATAKE, Shinsuke

Search repository
WATANABE, T.-H.

× WATANABE, T.-H.

WATANABE, T.-H.

Search repository
著者ID
内容記述タイプ Other
内容記述 0000-0001-5444-1758
抄録
内容記述タイプ Abstract
内容記述 The Eulerian variational principle for the Vlasov-Poisson-Ampère system of equations in a general coordinate system is presented. The invariance of the action integral under an arbitrary spatial coordinate transformation is used to obtain the momentum conservation law and the symmetric pressure in a more direct way than using the translational and rotational symmetries of the system. Next, the Eulerian variational principle is given for the collisionless drift kinetic equation, where particles' phase-space trajectories in given electromagnetic fields are described by Littlejohn's guiding center equations [R. G. Littlejohn, J. Plasma Phys. 29, 111 (1983)]. Then, it is shown that, in comparison with the conventional moment method, the invariance under a general spatial coordinate transformation yields a more convenient way to obtain the momentum balance as a three-dimensional vector equation in which the symmetric pressure tensor, the Lorentz force, and the magnetization current are properly expressed. Furthermore, the Eulerian formulation is presented for the extended drift kinetic system, for which, in addition to the drift kinetic equations for the distribution functions of all particle species, the quasineutrality condition and Ampère's law to determine the self-consistent electromagnetic fields are given. Again, the momentum conservation law for the extended system is derived from the invariance under the general spatial coordinate transformation. Besides, the momentum balances are investigated for the cases where the collision and/or external source terms are added to the Vlasov and drift kinetic equations.
書誌情報 Physics of Plasmas

巻 25, p. 102506, 発行日 2018-10-11
出版者
出版者 AIP Publishing
ISSN
収録物識別子タイプ ISSN
収録物識別子 1070664X
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA10987555
DOI
関連タイプ isIdenticalTo
識別子タイプ DOI
関連識別子 https://doi.org/10.1063/1.5031155
権利
権利情報 This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Physics of Plasmas 25, 102506 (2018) and may be found at https://doi.org/10.1063/1.5031155.
権利
権利情報 opyright 2018 Author(s). This article is distributed under a Creative Commons Attribution (CC BY) License.
関連サイト
識別子タイプ URI
関連識別子 https://aip.scitation.org/doi/abs/10.1063/1.5031155
関連名称 Publisher version
著者版フラグ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
NAIS
|||
戻る
0
views
See details
Views

Versions

Ver.1 2023-06-20 16:27:30.875448
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

SUGAMA, Hideo, NUNAMI, Masanori, SATAKE, Shinsuke, WATANABE, T.-H., 2018, Eulerian variational formulations and momentum conservation laws for kinetic plasma systems: AIP Publishing, 102506– p.

Loading...

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3